

Balancing Deliberation and Reaction, Planning and Execution for Space
Robotic Applications

Russell Knight, Forest Fisher, Tara Estlin, Barbara Engelhardt, Steve Chien

Jet Propulsion Laboratory
California Institute of Technology

{firstname.lastname}@jpl.nasa.gov

Abstract
Intelligent behavior for robotic agents requires a careful
balance of fast reactions and deliberate consideration of
long-term ramifications. The need for this balance is
particularly acute in space applications, where hostile
environments demand fast reactions, and remote locations
dictate careful management of consumables that cannot be
replenished. However, fast reactions typically require
procedural representations with limited scope and handling
long-term considerations in a general fashion is often
computationally expensive.

In this paper, we describe three major areas for
autonomous systems for space exploration: free-flying
spacecraft, planetary rovers, and ground communications
stations. In each of these broad applications areas, we
identify operational considerations requiring rapid response
and considerations of long-term ramifications. We describe
these issues in the context of ongoing efforts to deploy
autonomous systems using planning and task execution
systems.

1 Introduction
Recently, technologies for autonomous systems have made
considerable progress. Low-level behavior control and
motion, sensing, mode identification and diagnosis, task
execution and control, and automated planning and resource
management technologies have all made dramatic advances
in both the type and size of problems that can be solved.
These advances create the potential for robotic systems with
the ability to operate autonomously.
 However, robotic systems present unusual challenges in
that they require the tight integration of multiple
technologies with all of the stresses associated with a real
environment (e.g., hardware unreliability, hard timing
constraints, sensing uncertainty/error, etc.). This is what
makes robotic systems the most powerful demonstration of
intelligent agency.
 The principal contributions of this paper are to: 1)
identify aspects of autonomy required for autonomous
systems, 2) clarify the challenges, and 3) provide examples
of domains for which autonomy is useful. We believe that
all of these aspects must be recognized and dealt with
effectively to attain high levels of autonomy. In our
discussions, we will focus on the balance between reaction
and deliberation, and between planning and execution,

particularly as they relate to declarative and procedural
representations. Specifically, we will talk about examples
of these systems in the context of three NASA robotic
applications: free-flying robotic spacecraft, ground
communications stations and planetary rovers.
 The re mainder of this paper is organized as follows.
First, we define what we mean by autonomy, procedural,
declarative, deliberation, and reaction. We then describe a
generic architecture for planning and execution. Next, we
describe how this architecture is used to tightly couple
procedural and model-based reasoning as well as
deliberation and reaction. We describe these concepts in
the context of three NASA robotic applications. Finally we
describe approaches to the problem along with considerable
previous work in the area.

2 Issues in Planning and Execution
We define autonomy as the ability of a system to handle
complex tasks involving environmental feedback without
external intervention or supervision. Examples include the
operation of free-flying robotic spacecraft for mapping and
science observation missions, the operation of surface
rovers on extra -terrestrial missions, and the tracking of
spacecraft using ground communications stations. While
there are many aspects of autonomy, we focus on issues
arising from automated planning and scheduling in the
context of real-time task execution. Aspects of autonomy
we explore include system plan and task representation,
system control, plan generation, plan execution, monitoring,
and error handling.

2.1 Knowledge Representation
A complete autonomous system consists of hardware,
software (engines) and models. For the purposes of this
paper, we will focus on software and models. Software and
models may be defined either declaratively or procedurally.
Software 1 (e.g., a planning engine or task execution engine)
is the control information necessary to use the information
provided by models. A model is the knowledge about a
domain or situation.
 Procedural models represent domain knowledge by
embedding it in a control stream. This is sometimes
referred to as “arbitrary code.” It is often quite difficult to

1 We will assume all software is represented procedurally,
although there are exceptions, e.g. Prolog.

Proceedings of the 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems
Maui, Hawaii, USA, Oct. 29 - Nov. 03, 2001

0-7803-6612-3/01/$10.00 2001 IEEE 2131

separate the control information from the domain
information in procedural models. Declarative models are
static representations about events, objects, and their
relationships. The software required to use a declarative
model may be quite complex; this is the topic of
considerable Artificial Intelligence research.
 The tradeoff between procedural models and declarative
models is that while procedural models can be quickly
encoded for specific domains, conventional wisdom is that
(compared to declarative models) procedural models are
brittle and difficult to change. Declarative models do not
commit to any particular control path, and thus in theory
can be more flexible with respect to uncertain and unknown
events. However, the software that uses these models can
be slow and often requires more computational resources
than software using procedural models.

2.2 Plan Generation and Execution
Plan (and/or schedule) generation is the act of devising a set
of actions (the plan) to realize a task or set of goals. In order
to realize a task or achieve a goal, a system may use
deliberation and/or reaction. Deliberation is the process of
producing a collection of executable sub-tasks that when
executed result in the realization of a task/goals. This
collection of executable sub-tasks is referred to as a plan.
Deliberation is the search required to find an appropriate
plan and typically cannot guarantee finding a solution.

Reaction is the act of producing the next executable
sub-task required to achieve a task. Therefore, reactive
systems generate a plan one step at a time, only generating
the next step in the plan and waiting for the results before
continuing. Reaction performs little or no search, and thus
is able to provide a bounded time response. Reaction is a
very powerful technique that deals well with real-time
issues. However, reaction has the weakness that it may take
harmful actions that result in suboptimal performance or
even unnecessary failure because it does not perform look-
ahead. Even though it makes its decisions locally without
look-ahead, reaction still has many powerful capabilities
such as the ability to respond to execution errors in a timely
fashion through generic error handlers and task trees as well
as the ability to synchronize multiple execution threads.
 The tradeoff between deliberation and reaction is that
deliberation may require more resources (time and
computation) than reaction, resulting in missed deadlines.
Reaction may waste resources trying to achieve a task, and
might not solve the problems associated with achieving a
task at all. Further deliberation allows for plan optimization,
and the ability to solve the problem within the global
context of the robotic system and/or mission desires. We
see the use of both techniques to achieve robust autonomy.

Plan execution is the act of realizing a task given a plan.
Technologies used for plan execution include (among
others) execution software and mode identification.
Execution software takes the representation of a plan and
controls the hardware such that the tasks in the plan are

achieved. Mode identification is the act of using sensor
information and plan context to determine the state of the
environment and the state of the autonomous system. The
combination of execution software and mode identification
allows plan execution to achieve tasks of a plan and to
know that the tasks have been achieved. Likewise, failure to
achieve a state can be known and reported back to the plan
generation system. Reactive plan generation immediately
provides a new task (probably very similar to the failed
task) to be executed. If plan generation is deliberative, a
new plan or revised plan is produced.

We believe that declarative and procedural
representations of models as well as deliberative and
reactive plan generation are required for intelligent robotic
systems.

2.3 Architectural Approaches
A common approach to designing robotic automation
control software is to utilize a three-tier architecture (Gat
1998) to combine different components of the system. This
framework provides a template for interfacing components
that operate at different levels of abstraction and provide
varying time responsiveness. A three-tier architecture is
typically comprised of a deliberator (planner) tier, a task
executor (sequencer) tier, and a skills/controller tier.

These tiers are usually organized by the level of
abstraction in which they operate. The deliberator
generally produces high-level plans using AI planning
techniques, which are typically computationally intensive
algorithms. Thus, this tier can take a significant amount of
time to respond to new updates or changes (on the order of
minutes to several hours). Domain knowledge for this tier
is usually encoded using a declarative model, where it can
be easily utilized by different search techniques.

The executor (or sequencer) is responsible for the
execution of the plans produced by the deliberator. This
execution often involves further expansion of scheduled
activities based on execution context (both state and task
context). The executor is also responsible for monitoring
activities and conditions as execution proceeds and handles
exceptions as they arise. This tier must quickly react to
situations, so its behavior is typically much more
responsive than that of the deliberator (typically responding
on the order of seconds or even tenths of seconds).
Domain knowledge at this tier is usually represented using
procedural constructs, which easily encode the desired
behavior (e.g., looping, conditionals). In most three-tier
architectures, the executor tier drives the overall system by
not only dispatching commands to the controller tier but
also by requesting new plans from the deliberator at the
appropriate times.

The controller consists of software controllers that
directly command the hardware. Each task scheduled by
the executor typically corresponds to a primitive behavior
defined in the controller tier for direct execution on the
hardware.

2132

3 Domains

3.1 Free-flying robotic spacecraft

One prominent domain in space exploration that requires
autonomy is free-flying robotic spacecraft (Figure 1). A
free-flying spacecraft remains in space until it is turned off
or de-orbited. There are several aspects of operating such a
spacecraft (autonomous or otherwise). These include power
management, attitude control, navigation, communications,
and science instrument operation. Most of these systems are
already highly automated. For example, the attitude control
system (ACS2) can be expected to manage pointing the
spacecraft given an orientation.

In general, to increase the level of autonomy of free-
flying spacecraft, we focus on 1) recognizing and
responding to opportunities, and 2) responding to
unforeseen problems. In this context, we will highlight the
roles of reactive/deliberative plan generation, plan
execution, and procedural/declarative model represen-
tations. It is important to note that the responsiveness of the
system relies on three factors: 1) how quickly (and well) the
mode can be identified, 2) how quickly (and well) a plan
can be generated, and 3) how quickly (and well) the plan
can be executed. Our overall goal is to make spacecraft as
responsive as possible for as many different situations as
possible.

We define nominal operations as spacecraft operations
with no unforeseen problems and no unforeseen
opportunities. Although they are highly automated, even
nominal operations can require sophisticated projection and
mode identification systems. Interactions between the
various systems can lead to complex forecasting issues. For
example, commanding the ACS to point a science
instrument at a star might require power, which in turn
results in commanding the ACS to point the solar arrays at
the sun. But, if the system always remains in a nominal
operating scenario, then we can pre-compile our plans and
send them along with the spacecraft.

Continuous nominal operations rarely occur. One reason
is that often our goal in flying such spacecraft is to achieve
as much science as possible. If we could predict the science,
we would have little need to fly most of our spacecraft.
Scientific opportunities are often discovered based on the
information obtained by the instruments. Historically,
information is analyzed on the ground and then new science
goals are sent to the spacecraft to capitalize on these
opportunities. If light travel time is large or there is a
communications bottleneck, this can lead to lost
opportunities.

2 For our discussion we will assume the use of propellant
and thrusters to change or maintain the orientation of the
spacecraft. Propellant fuels thrusters (through burning or
release under pressure) and provides the mass to push
against so that the spacecraft can maneuver in a vacuum.

Another reason continuous nominal operations rarely
occur is that the environment and spacecraft hardware can
be unpredictable. During off-nominal operations (where
unforeseen events occur) spacecraft often do not have the
technology to characterize the situation and respond
accordingly. For current missions off-nominal operations
often lead to the spacecraft going into a safe mode that
ensures communications and hardware operability. The
spacecraft then waits for operators on the ground to respond
and direct it accordingly. Again, if light travel time is large
or there is a communications bottleneck, this can lead to
lost science due to waiting. Even worse, if there is no truly
safe configuration that can be pre-packaged and carried
along, then the spacecraft might be lost. For example,
because of the time critical nature of orbit insertion, no safe
mode exists.
 Opportunities manifest themselves in a number of ways.
We focus on 1) extra resource availability and 2) new
science opportunities. Extra resource availability occurs
when fewer resources were consumed during nominal
operations. For example, the ACS system might have used
less propellant than previously projected. The mode
identification system must be sophisticated enough to
realize that extra resources are available. This can be as
simple as taking a measurement, e.g., identifying that extra
propellant is available. On the other hand, identifying that
extra time is available before re-entry can be a complex
combination of measurements and computations. Both of
these examples are traditionally modeled procedurally. A
more difficult task is identifying interesting scientific
events. Vision systems capable of performing such tasks
require large amounts of computational resources. Once the
opportunity is identified, a new plan must be generated. If a
few simple steps are required that do not contend with other
on-going tasks, then the system can reactively generate a

Figure 1: Europa Orbiter

2133

plan that takes advantage of the opportunity. On the other
hand, most systems and operations interact, and the
ramifications of actions on the system as a whole must be
considered. If there are many interactions and many options
for achieving goals, then it might be difficult or impossible
to respond reactively. Deliberation provides a plan under
these circumstances.
 Unforeseen problems manifest themselves in a number
of ways, as well. We focus on 1) resource over-utilization,
2) failed tasks, and 3) hardware or subsystem failure.
Resource over-utilization occurs when a task requires more
resources than expected operations. For example, the ACS
system might have used more propellant than previously
projected. Again, the mode identification system must be
sophisticated enough to know that extra resources were
used. Depending on the complexity of the projection, this
may be nearly instantaneous or take a considerable amount
of time and resources. Once identified, a new or modified
plan must be generated that achieves the assigned tasks (or
removes lower priority tasks). Failed tasks are similar in
nature to over-subscriptions. The task must be identified as
having failed and a new or modified plan must be generated
that achieves the failed task. Hardware or subsystem failure
identification is challenging. Often, hardware and
subsystems fail in unpredicted ways. Mode identification
under these circumstances includes sensor data, statistical
inference, and model modification. Failure of a system can
degrade operations (e.g., failure of a bi-directional filter
wheel to turn counter-clockwise), or preclude them
operating all together (e.g., failure of a communications
antenna). Ideally, mode identification would characterize
the changes required to the various models, but currently
most models that handle system failure do so explicitly.

3.2 Deep Space Communication

Another domain area that benefits from autonomy software
is NASA’s Deep Space Network (DSN). The DSN (DSN
94) is the most sensitive scientific telecommunications and
radio navigation network in the world (Figure 2). The
purpose of the DSN is to support robotic interplanetary
spacecraft missions and support radio and radar astronomy
observations in the exploration of the solar system and the
universe. The functions of the DSN are to receive
telemetry signals from spacecraft, transmit commands that
control the spacecraft operating modes, and generate the
radio navigation data used to locate and guide the
spacecraft to its destination. In addition, the DSN also
collects flight radio science, radio and radar astronomy,
very long baseline interferometry, and geo-dynamics
measurements.

Current manual operations of the DSN (under nominal
conditions) involves the issuing of hundreds (~700) of
command directives whose selection, format,
parameterization, and sequencing are dependent on the
class of communication service being performed (>100
possible combinations), the instance of the equipment set,

and type of the sub-systems used to fulfill the service (>400
combinations). For instance, different versions of a same
subsystem will have variations on its command sets and on
the format, type, and number of parameters. An example of
how equipment assignments result in changes to the
command sequence is the utilization of the 34-Meter Beam
Wave Guide (BWG) antenna. This requires a different type
of antenna controller than if a 34M High Efficiency (HEF)
or 70M antenna is assigned to the service. The resultant
antenna controller dictates both the command set (i.e.,
available commands and format) and the operations
procedure (i.e., the necessary steps to configure and
command) for that station. Planning and execution
technology can be used to autonomously generate these
antenna-command sequences and to handle the resolution
of the above stated interactions.

For nominal operations, a DSN ground station
command sequence provides the following services: uplink
of spacecraft commands, downlink of telemetry 3 data and
science data, handling of bit rate changes (speed of data
transmission), ranging (method used to determine exact
spacecraft location), and a number of others services.

The first step in the process is to configure all of the
appropriate subsystems, taking into account any inter-
dependencies. Using a declarative representation an
autonomous system can reason in a general fashion about
such interdependencies. An example of such a dependency
is that configuring the receiver (RCV) requires loading of
configuration tables and ensuring that the data path from

3 Telemetry data refers to spacecraft engineering and health
data representing the state of the spacecraft in conjunction
with subsystem commands and responses.

Figure 2: 70-Meter Deep Space
Communication Antenna

2134

the horn to the appropriate low noise amplifier is
established. Another example is that the routing of the
signal path is managed by the microwave controller
subsystem (UWC), resulting in the ordering constraint that
the UWC be configured prior to the RCV.

Due to the nature of the complex communication
process carried out by the DSN it is not uncommon for
failures to occur. This results in the need for recovery steps
to be carried out quickly. In an autonomous system,
failures are typically handled in a reactive manner. In the
case of equipment failure, a simple set of local changes to
the executing plan can often handle the failure. And in
some causes, further global reasoning may be required to
completely recover the plan from a far-reaching failure.

One example of a failure is the lack of a response from a
command directive due to general unreliability in the DSN
subsystems. In this case, it is often appropriate to resend the
command, which is a step easily added through a reactive
executive. The reason behind a retry is that it is not
uncommon for the communication to the subsystems or
internal to the subsystems to be temporarily interrupted. If
the retry does not result in the desired effect, then it is
possible that the subsystem will require resetting. In this
case the appropriate behavior is for the subsystem to be
immediately reset. This in turn would result in the
subsystem not being configured, requiring the selection of
the appropriate reconfiguration steps for that subsystem.
This may result in reconfiguring other subsystems as well.
Since this has global effects on the state of the system, it is
usually resolved through deliberation.

An autonomous system is expected to respond to
unexpected changes in system state or the required service
request. For example, if an analysis of telemetry data
indicates that the spacecraft is in safe mode, an autonomous
system must respond immediately to the resulting change in
service request. In this event the communications station
must be able to alter its planned sequence of activities to
accommodate the new/modified request. As a specific
example, Mars Global Surveyor (MGS) entered safe mode
in response to anomalies on the spacecraft. This occurrence
first resulted in deviations (lower bit-rates) to the original
spacecraft communications plan and subsequently resulted
in the mission changing (in real-t ime) the request for
service in an attempt to diagnose the cause of the onboard
troubles. This sort of scenario further emphasizes the need
for an autonomous system to provide the flexibility to
receive new goals and to rapidly replan accordingly. A
similar scenario is if a station is preempted it must be able
to switch to providing service in a rapid fashion.

Another requirement on the part of the autonomous
system is the overlapping of one communication pass with
another to take advantage the setup/configuration steps. In
the current paradigm of operations, each communication
pass (i.e., service provided to a single mission), is treated as
an isolated event consisting of: 1) a setup phase referred to
as pre-track, 2) the service phase referred to as in-track, and

3) a shutdown/cleanup phase referred to as post-track. The
pre-track configures the station for service from a fixed
start state, and post-track returns the station to that same
start state. In the manual operations of the station, the pre-
track phase can take as long as 45 minutes to execute and
the post track phase can take as long as 15 minutes to
execute. Study of the problem has shown that much of this
pre-track time could be eliminated by overlapping services
from one mission to another enabling the system to utilize
steps already taken by a previous communication pass.
This could result in a reduction of as much as 10-50%
overhead and enable increased utilization of the network.
To take advantage of this synergistic interaction between
the individual elements of the plan, the autonomous
planning and execution system must reason at a global
level.

3.3 Planetary Rovers

Autonomy not only benefits but also enables the task of
coordinating rovers for in-situ planetary science (Figure 3).
Several future missions are being planned to send robotic
vehicles to Mars. In order to provide a high-rate of science
return and to enable rovers to travel long distances, these
missions will require highly autonomous rovers that require
little communication with scientists and engineers on earth
to perform their tasks. An autonomous rover should be able
to make decisions about how to best achieve science goals
as well as be able to react to its environment and handle
unforeseen events while achieving these goals.

Future rovers for these missions must respond in a
timely fashion to a dynamic and unpredictable environment.
Rover plans must often be modified in the case of fortuitous
events (such as science observations completing early) and
setbacks (such as traverses taking longer than expected or
hardware failures). In addition, many important science
opportunities may arise suddenly, and plans handling such
events cannot be created in advance. These opportunities
must be handled dynamically, and often be allowed to pre-
empt previously planned science activities.

Current rover operations are extremely limited and offer
little space for autonomous activities. Operations for
Sojourner were manually planned on the ground on a daily
basis (Mishkin et al., 1998). In this mode of operations, the
rover state at the start of the next day planning horizon was
pre-determined based on data feedback from the previous
day’s operation. The science and engineering operation
goals were then considered, and a plan for achieving the
goals would be manually generated (which often took 5
hours or more to complete). This plan or sequence was
then uplinked to the rover for execution onboard with only
minimal amounts of flexibility. If an unexpected failure
occurred, the rover would usually be taken into a safe mode
by fault protection software and the rover would then wait
in this state until the ground operations team could respond
and determine a new plan. Correspondingly, if an
unexpected fortuitous event occurred, the plan could not be

2135

modified to take advantage of the situation. In our
experience, there are many rover operations situations
where autonomous software can provide important
capabilities. For instance, providing more onboard
autonomy will allow more science data to be collected and
even enable new science activities, which would be
virtually impossible to perform using strictly manual rover-
plan generation.

One area important for rover operations is the ability to
apply certain search techniques to periodically order
science goals and their related traverses in an optimal (or
high-quality) fashion. Before a rover plan is executed,
science goals and engineering activities are often scheduled
so as to reduce power resource usage. However, if
something unexpected occurs during plan execution, such
as an unknown obstacle blocking a pre -planned route,
science goals may need to be re-ordered. For instance,
assume that during a traverse a new rock formation (not
seen in previous terrain imagery) is picked up by the rover’s
onboard sensors, and this causes the rover to go off-track in
order to avoid the new obstacle. An autonomous system
would recognize that the rover has gone significantly off
the previously planned route and may re-order the science
targets based on the rover’s current location. This re -
ordering often involves a significant amount of search to
find a new (optimal) path, and the search process must
consider the entire plan when making its decisions. This
type of capability can only be performed in a deliberative
fashion where search techniques can be used to find
globally optimal solutions.

Flexibility in domain knowledge representation is
another useful part of an autonomous rover control system.
One common procedure for rover missions is to reas on
about different science goal priorities both before and
during plan execution. A rover can only perform a limited
amount of activities, and the highest priority science targets
should be scheduled if at all possible. However, this
schedule may have to change during execution. If a long-
range traverse ends up taking much longer than previously

estimated (possibly due to difficult terrain), later science
goals may have to be discarded due to the limited amount
of power onboard. Ideally, the least important science
goal(s) should be deleted from the plan so that the more
important data is still collected. This type of domain
knowledge is best represented in a declarative fashion,
which not only allows for more flexibility during the search
process, but also enables complex goal relations and
interdependencies to be represented. Also, similar to the
above example, deliberative search techniques allow an
autonomous system to determine the best global strategy
(e.g., deleting a later science goal by evaluating overall
resource consumption), where a more reactive strategy
would only allow very local schedule changes.

Other rover situations require more reactive behavior.
Many science opportunities need some sort of immediate
reaction. For example, if a rover sensor detects a Martian
dust-devil the rover will need to immediately react in order
to record the event and take other relevant measurements.
Even pre-planned science experiments often need reactive
elements to be executed on the fly (or to fill out a partially
complete sequence). For instance, a rover may have to use
current sensor values to determine what exact steps to
perform during an experiment. If a rover is digging or
drilling, the depth the rover explores to may be dependent
on the current soil consistency. Or a rover may have to
evaluate a rock’s material spectral readings before selecting
it as a good sample to collect. Furthermore, some
operations may have to be performed several times before
they are successful, and the number of retries will not be
known until the operation is being performed. For instance,
a rover may have to try several times before grasping a rock
successfully. All of these behaviors require reactive
capabilities where the rover plan can be quickly adapted to
current information. In addition, knowledge about these
behaviors is often best represented in a procedural fashion
where conditional statements and looping constructs are
easy to encode.

Failures or other undesirable situations also require
reactive behavior. For instance, if battery voltage suddenly
drops, an autonomous system should react quickly to such
an event and gracefully end the current science experiment
where as much data is retained as possible. Or if the wheel
slippage has caused the position estimate uncertainty to
grow too large, the rover should immediately stop and
perform a localization activity that would recalculate a
more accurate position estimate. All of these behaviors
require quick-response times and, again, are best encoded
using procedural constructs.

4 Summary of Approaches
There are a number of existing systems that also integrate
scheduling, planning, control, and execution monitoring.
We do not attempt to review them all, but focus on some of
the representative systems.

Figure 3: 2003 Mars Exploratory Rover (MER)

2136

4.1 Approaches with Strong Executors
The first class of approaches to autonomy are mainly
enhanced procedural executor systems, some of which are
capable of more advanced deliberation than is usually
credited to executors. Moreover, a few rely on declarative
models and integrate minor planning or scheduling
components.

Brooks’ subsumption architecture (Brooks, 1986)
introduced the paradigm control algorithms for autonomous
robots, although it contains no hierarchy of planning,
scheduling, or control. This type of architecture has often
been used for mobile robot navigation, where replanning
and rescheduling is a more constrained problem than in the
domains described above.

TCA/TDL (Simmons 1994, Simmons, Apfelbaum 1998)
is a stand-alone sequencer/controller that consists of
distributed modules working with a central control module
via message passing. The hierarchy that created schedules
or plans in TCA operates by setting up a task tree that is
expanded on the fly during execution, and simultaneously
monitors feedback from the controller.

Both SOAR (Laird et al. 1987) and Guardian (Hayes-
Roth, 1995) are general reasoning systems that can be
adapted to a given task environment. Guardian does not
have a hierarchical architecture, but uses a blackboard
architecture with one module devoted to scheduling,
planning, and control. SOAR also collapses all the tiers
into a single reactive, rule -based mechanism.

The Spacecraft Commanding Language (SCL) (Buckley,
1991) is an executor that uses procedural scripting to
execute scripts in parallel, maintain a global database,
monitor changes in the database, and notify other
subsystems of any changes it observes. It is designed to
have very fast reaction times for critical spacecraft
scenarios, and has been used aboard a number of NASA
spacecraft.

CIRCA (Musliner et al. 1993) has a three-tiered
architecture comprised of a planner, scheduler, and an
executor that interacts with the environment through
actuators and sensors in a mobile robot navigation domain.
CIRCA’s scheduling enforces hard real-time constraints,
but it returns failure if it cannot meet the time constraints.

ATLANTIS (Gat, 1992) is comprised of a controller that
acts at the lowest reactive level, a sequencer that is a
special-purpose operating system based on the RAP system,
and a deliberator that does planning and world modeling.
In ATLANTIS, it is the sequencer that does the brunt of the
work; the deliberator is under the control of the sequencer.
In fact, the deliberator’s output is merely used as advice by
the sequencer, and the entire system is able to function
without the deliberator, if necessary.

3T (Bonasso et al. 1997) is a three-tiered architecture
with a planner, sequencer, and a reactive skills module that
interacts with the environment. Hierarchical planning
occurs before sequencing. The sequencer in 3T is a RAP
(Firby, 1989) interpreter that encodes all the timing

information within the RAPs. In 3T all three of its tiers do
not need to be used for a given task.

AuRA (Arkin, 1989, Arkin and Balch, 1997) has three-
tiers: planning, sequencing, and execution for use in
mobile robot navigation. Its sequencer simply traverses a
FSA expression of a plan, unlike the more powerful
executives in 3T and ATLANTIS.

4.2 Formal Planning Approaches
There are a number of systems that interleave more formal
planning and execution in partially observable
environments using graph structures such as MDPs or
formal first order logic representations. Many of these
integrate execution with deliberation in order to actively
gather information from the environment for the planners to
generate better plans.

The RETSINA multiagent system (Paolucci, 2000) uses
the HITaP planner that interleaves planning and execution
in order to gather information by querying and tasking other
agents and the environment. HITaP uses hierarchical task
network methods to search for executable plans. When an
unknown parameter is required for further decomposition, a
task that will observe that parameter is executed, and the
observed results are set in the BeliefDB so that planning
may continue.

Alami (Alami 1998) describes a method for interleaving
planning and execution for coordinating multiple robots.
The core innovation is the plan merging paradigm that
allows one robot to use another robot’s current plan to
coordinate activities and goals with its own.

Dearden (Dearden 1994) uses Markov Decision
Processes (MDPs) and associated search algorithms to find
near optimal plans. Search and execution are interleaved in
order to gather information as the search proceeds by
choosing a best action, executing that action, observing the
results, and iterating. Search is performed using an
envelope that focuses on nodes in the MDP relevant to the
current problem.

ASPIRE (Helwig, 1996) interleaves planning and
execution, using the DRIPS decision-theoretic refinement
planner based on MDPs to find optimal plans. The
execution module translates plan actions into commands to
a physical device and monitors the progress of the actions.
The search operates over the abstraction hierarchy in the
planner for goals and actions.

Dervish (Nourbakhsh, 1997) interleaves conditional
planning and execution with incomplete information based
on simplifying assumptions and then creating a framework
where incorrect assumptions still avoid unsolvable states.
Assumptions are for post-conditions of certain activities
that may not achieve them, and initial conditions and
percepts that may be inaccurate. During run time, the
assumptions are updated based on the accuracy of the
predictions.

For XII (Golden, 1996), which is working on an Internet
Softbot, the decision about whether to execute an activity in

2137

the presence of incomplete information is posed as a search
problem. The planner itself is an extension of UCPOP, so it
can handle universal quantification and conditional effects,
combined with XIIL, which is a language for representing
sensory actions and information goals. One drawback of
representing uncertainty related only to observation and
execution is that exogenous events are not well accounted
for and cannot be reasoned about thoroughly.

The IPEM system (Ambros-Ingerson, 1988) created a
framework for classical planning for simple execution and
replanning scenarios. It would be difficult to extend IPEM
to complex planning problems, as the system does not
extend to resources or real time planning, but it provides a
rich framework from which many later planners could draw
information and lessons.

4.3 Approaches using Strong Deliberators
The final class of approaches to autonomy include systems
that focus on a powerful deliberator component and have
been used on large domains.

DPLAN/NMC (Chien et al 1997) is a three-tiered
architecture where the deliberator, DPLAN, is an integrated
HTN and POP style planner that generated abstract antenna
plans. The executive and the controller functionality were
special purpose software developed for human operated
antenna operations, but were later interfaced with DPLAN
to perform additional automation.

DS-T (Estlin et al 1999) also utilized a traditional three-
tier architecture with a batch planning system, ASPEN, and
an integrated executive/software controller. The executor
component comes from a COTS system, EPOCH-2000, that
uses procedural scripting.

The Remote Agent Experiment (RAX), which flew on
Deep Space-1, demonstrated the three tier architecture and
its ability to autonomously control an active spacecraft
(Pell, 1997). The HSTS batch planning system was used
for the deliberator, and ESL acted as the sequencer. One
problem discovered using this architecture involves
including a batch planner on a reactive system. The batch
planner took hours to replan after state and resource updates
had invalidated the original plan, and the plan was
regenerated from the original set of inputs.

CASPER (Chien et al 2000) uses a powerful integrated
continuous planning and scheduling engine combined with
a very simple executive. CASPER is comprised of the soft
real-time version of the batch planner ASPEN by creating
time windows for execution, scheduling, and planning.
Although the time allocated to replanning has been reduced
from minutes or hours on previous batch systems to
seconds, many real time systems require even faster
responses.

CLEaR (Fisher et al 2000) is a system utilizing the
CASPER continuous planner in conjunction with TDL in
order to provide a planning and execution system for closed
loop commanding. CLEaR leverages the power of the
procedural representation in TDL and the declarative

representation in CASPER. The deliberative and reactive
methods operate in parallel at run time to determine how to
best respond to failures and take advantage of opportunities.

The CPEF system (Continuous Planning and Execution
Framework) (Myers 1998), using PRS, AP, and SIPE-2, is a
similar framework for integrating planning and execution.
CPEF attempts to cull out key aspects of the world to
monitor (as is necessary in general open-world domains).
As in ASPEN, CPEF also uses iterative repair under the
term “conservative repairs”. The taxonomy of failure types
similarly represents action failure and re-expansion of task
networks using re-decomposition.

Rogue (Haigh, 1996) uses the Prodigy4.0 planning and
learning system and a number of lower level tiers (obstacle
avoidance, navigation, path planning, and task planning) on
Xavier the robot. The learning portion of the system maps
events and execution features to the cost,and creates
situation-dependent rules. The system relies on the abilities
in the planner to handle recovery scenarios and may require
human interaction, such as in the case of navigation, to tell
the robot how far off of its estimated position it really is.

5 Conclusions
This paper has described issues in balancing deliberation
and reactivity and in balancing declarative and procedural
representations for autonomous robotics applications. We
have discussed these issues with respect to planning and
execution in the context of three NASA robotics
applications: free-flying spacecraft, ground
communications stations, and planetary rovers for in-situ
science. We have also described some of the systems that
strive to address these issues. By describing some of the
challenges in these applications, we hope to encourage
further research in this key area of autonomous systems.

6 Acknowledgements
This work was performed by the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the
National Aeronautics and Space Administration.

References
(Alami, 1998) R. Alami, F. Ingrand, S. Qutub. "A Scheme for

Coordinating Multi-robot Planning Activities and Plans
Execution." In Proceedings of European Conference on
Artificial Intelligence, Brighton UK, 1998.

(Ambrose-Ingerson, 1988) J. Ambros-Ingerson and S. Steel.
“Integrating planning, execution and monitoring.” In
Proceedings of the Seventh National Conference on Artificial
Intelligence, 1988.

(Arkin, 1989) R. Arkin. “Motor schema-based mobile robot
navigation.” International Journal of Robotics Research,
8(4), 1989.

(Arkin and Balch, 1997) R. Arkin and T. Balch. “AuRA:
Principles and Practice in Review.” Journal of Experimental
and Theoretical Artificial Intelligence, 9(2), 1997.

2138

(Beetz, 1994) M. Beetz and D. McDermott. “Improving robot
plans during their execution, Proceedings of the Second
International Conference on AI Planning Systems, 1994.

 (Bonasso et al. 1997) R.P. Bonasso, R.J. Firby, E. Gat, D.
Kortenkamp, D.P. Miller, and M.G. Slack. “Experiences
with an Architecture for Intelligent, Reactive Agents.” In
Journal of Experimental and Theoretical Artificial
Intelligence, March 1997.

(Brooks, 1986) R. Brooks. “A Robust Layered Control System
for a Mobile Robot.” In IEEE Journal of Robotics and
Automation, 2(1), 1986.

(Buckley, 1991) Buckley, Brian and Wheatcraft, Louis:
“Spacecraft Command Language - A Smart Control System,
Interface and Control Systems,” http://
www.interfacecontrol.com, Barrios Technology, Houston,
TX., March 1991.

(Chien et al, 1997) S. A. Chien, R. W. Hill Jr., A. Govindjee, X.
Wang, T. Estlin, M. A. Griesel, R. Lam, and K. V. Fayyad,
“A Hierarchical Architecture for Resource Allocation, Plan
Execution, and Revision for Operation of a Network of
Communications Antennas,” Proceeding of the IEEE Int’l
Conference on Robotics and Automation (ICRA), 1997

(Chien et al, 2000) S. Chien, R. Knight, A. Stechert, R. Sherwood,
and G. Rabideau, "Using Iterative Repair to Improve the
Responsiveness of Planning and Scheduling," Proc. of the 5th
Int’l Conference on Artificial Intelligence Planning and
Scheduling, Breckenridge, CO, April 2000.

(Dearden, 1994) R. Dearden and C. Boutilier. “Integrating
planning and execution in stochastic domains.” In
Proceedings of the Tenth Conference on Uncertainty in
Artificial Intelligence, Seattle, July 1994.

(Draper, 1994) D. Draper, S. Hanks, and D. Weld. “Probabilistic
planning with information gathering and contingent
execution.” In Proceedings of the Second Int’l Conference on
Artificial Intelligence Planning Systems, June 1994.

(DSN, 1994) Deep Space Network, Jet Propulsion Laboratory
Publication 400-517, April 1994.

(Durfee, 1997) E.H. Durfee, P.G. Kenny, and K.C. Kluge.
“Integrated permission planning and execution for unmanned
ground vehicles.” In Proceedings of the First International
Conference on Autonomous Agents , 1997.

(Estlin et al 1999) T. Estlin, F. Fisher, D. Mutz, S. Chien,
"Automated Planning for a Deep Space Communications
Station", Proceedings of the IEEE Conference on Robotics
and Automation (ICRA), May 1999.

(Estlin et. al. 1996) T. Estlin, X. Wang, A. Govindjee, and S.
Chien, “DPLAN Deep Space Network Antenna Operations
Planner Programmers Guide Version 1.0,” Jet Propulsion
Laboratory Technical Document D-13377, February 1996.

 (Firby, 1989) R.J. Firby. “Adaptive Execution in Complex
Dynamic Worlds.” PhD Thesis, Yale University, 1989.

(Fisher et al 2000) F. Fisher, R. Knight, B. Engelhardt, S. Chien,
N. Alejandre, "A Planning Approach to Monitor and Control
for Deep Space Communications", Proceedings of the IEEE
Aerospace Conference (IAC), March 2000.

(Gat, 1998) E. Gat. “On Three-Layer Architectures.” In D.
Kortenkamp, R. P. Bonnasso, and R. Murphy, eds. Artificial
Intelligence and Mobile Robots . MIT/AAAI Press.
Cambridge, MA, 1998.

 (Gat, 1992) E. Gat. “Integrating planning and reacting in a
heterogeneous asynchronous architecture for controlling real-

world mobile robots.” In Proceedings of the National
Conference on Artificial Intelligence (AAAI), 1992.

(Golden, 1996) K. Golden, O. Etzioni, and D. Weld. “Planning
with execution and incomplete information.” Technical
report, Dept of Computer Science, University of Washington,
TR96-01-09, February 1996.

(Haigh, 1996) K. Haigh, and M. Veloso. “Interleaving planning
and robot execution for asynchronous user requests.” In
Proceedings of the International Conference on Intelligent
Robots and Systems (IROS), 1996.

(Hayes-Roth, 1995) B. Hayes-Roth. “An Architecture for
Adaptive Intelligent Systems.” Artificial Intelligence, 72,
1995.

(Helwig, 1996) J. Helwig and P. Haddawy. “An Abstraction-
Based Approach to Interleaving Planning and Execution in
Partially-Obserable Domains.” AAAI Fall Symposium on
Plan Execution: Problems and Issues . November 1996.

(Laird et al. 1987) J.E. Laird, A. Newell, and P.S. Rosenbloom.
“SOAR: An Architecture for General Intelligence.”
Artificial Intelligence, 33(1), 1987.

(Mishkin et al, 1998) A. Mishkin, J. Morrison, T. Nguyen, H.
Stone, B. Cooper, B. Wilcox, "Experiences with Operations
and Autonomy of the Mars Pathfinder Microrover,"
Proceedings of the 1998 IEEE Aerospace Conference,
Snowmass at Aspen, Colorado, 1998.

(Musliner et al. 1993) D.J. Musliner, E. Durfee, and K. Shin.
“CIRCA: A cooperative, intelligent, real-time control
architecture.” IEEE Transactions on Systems, Man and
Cybernetics, 23(6), 1993.

(Myers, 1998) K. L. Myers. “Towards a framework for continuous
planning and execution.” Proceedings of the AAAI 1998 Fall
Symposium on Distributed Continual Planning, Menlo Park,
CA, 1998.

(Nourbakhsh 1997) I. Nourbakhsh. “Interleaving Planning and
Execution for Autonomous Robots.” PhD thesis. Department
of Computer Science, Stanford University, 1997.

(Paolucci et al, 2000) M. Paolucci, O. Shehory, and K. Sycara.
“Interleaving planning and execution in a multiagent team
planning environment.” In CMU-RI-TR-00-01, 2000.

(Pell et al, 1997) B. Pell, E. Gat, R. Keesing, N. Muscettola, and
B. Smith, 1997b. “Robust periodic planning and execution
for autonomous spacecraft.” In Proceedings of the Int’l Joint
Conference on Artificial Intelligence, 1997.

(Pemberthy & Weld 1992) J. S. Pemberthy and D. S. Weld,
"UCPOP: A Sound Complete, Partial Order Planner for
ADL," Proceedings of the Third Int’l Conference on
Knowledge Representation and Reasoning, October 1992.

(Simmons, Apfelbaum 1998) R. Simmons and D. Apfelbaum, “A
Task Description Language for Robot Control,” Proceedings
of Conference on Intelligent Robotics and Systems,
Vancouver Canada, October 1998.

(Simmons, 1994) R. Simmons. “Structured Control for
Autonomous Robots.” IEEE Transactions on Robotics and
Automation, 10(1), February 1994.

(Sycara, Pannu, 1998) K. P. Sycara and A. S. Pannu, “The
RETSINA Multiagent System: Towards Integrating Planning,
Execution and Information Gathering.” In Proceedings of the
Second International Conference on Autonomous Agents,
1998.

2139

